Project Title	Funding	Strategic Plan Objective	Institution
Multiplexed suspension arrays to investigate newborn and childhood blood samples for potential immune biomarkers of autism	\$0	Q1.L.A	Centers for Disease Control and Prevention (CDC)
Biomarkers for autism and for gastrointestinal and sleep problems in autism	\$0	Q1.L.A	Yale University
Identification of lipid biomarkers for autism	\$0	Q1.L.A	Massachusetts General Hospital
Abnormal vestibulo-ocular reflexes in autism: A potential endophenotype	\$0	Q1.L.A	University of Florida
Placental vascular tree as biomarker of autism/ASD risk	\$0	Q1.L.A	Research Foundation for Mental Hygiene, Inc.
A prospective multi-system evaluation of infants at risk for autism	\$0	Q1.L.B	Massachusetts General Hospital
Family studies of sensorimotor and neurocognitive heterogeneity in autism spectrum disorders (ASD)	\$0	Q1.L.B	University of Texas Southwestern Medical Center
A prospective multi-system evaluation of infants at risk for autism	\$0	Q1.L.B	Massachusetts General Hospital
Receptive vocabulary knowledge in low-functioning autism as assessed by eye movements, pupillary dilation, and event-related potentials	\$0	Q1.L.C	Johns Hopkins University
Atypical pupillary light reflex in individuals with autism	\$0	Q1.Other	University of Missouri
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.
Self-injurious behavior: An animal model of an autism endophenotype	\$0	Q2.Other	University of Florida
Serotonin signal transduction in two groups of autistic patients	\$0	Q2.Other	University of Illinois at Chicago
Neural basis of empathy and its dysfunction in autism spectrum disorders (ASD)	\$0	Q2.Other	Duke University
Developing novel automated apparatus for studying battery of social behaviors in mutant mouse models for autism	\$0	Q2.Other	Weizmann Institute of Science
Role of autism-susceptibility gene, CNTNAP2, in neural circuitry for vocal communication	\$0	Q2.Other	University of California, Los Angeles
Characterization of the pathological and biochemical markers that correlate to the clinical features of autism	\$0	Q2.Other	Research Foundation for Mental Hygiene, Inc.
Excessive cap-dependent translation as a molecular mechanism underlying ASD	\$0	Q2.Other	New York University
Systematic characterization of the immune response to gluten and casein in autism spectrum disorders	\$0	Q2.S.A	Weill Cornell Medical College
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	University of Rochester
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	Arkansas Children's Hospital Research Institute
Mechanisms of mitochondrial dysfunction in autism	\$0	Q2.S.A	Georgia State University

Project Title	Funding	Strategic Plan Objective	Institution
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Q2.S.A	State University of New York at Potsdam
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$0	Q2.S.D	Stanford University
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Q2.S.D	Children's Memorial Hospital, Chicago
Gastrointestinal functions in autism	\$0	Q2.S.E	University at Buffalo, The State University of New York
Etiology of sleep disorders in ASD: Role of inflammatory cytokines	\$0	Q2.S.E	University of Maryland, Baltimore
Neural correlates of restricted, repetitive behaviors in autism spectrum disorders	\$0	Q2.S.G	Massachusetts General Hospital
Neural correlates of restricted, repetitive behaviors in autism spectrum disorders	\$0	Q2.S.G	Massachusetts General Hospital
The transcription factor PLZF: A possible genetic link between immune dysfunction and autism	\$0	Q3.L.B	Memorial Sloan-Kettering Cancer Center
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Harvard University
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Massachusetts General Hospital
Maternal risk factors for autism spectrum disorders in children of the Nurses' Health Study II	\$0	Q3.L.C	Harvard University
Immunopathogenesis in autism: Regulatory T cells and autoimmunity in neurodevelopment	\$0	Q3.S.F	East Carolina University
MeHG stimulates antiapoptotic signaling in stem cells	\$0	Q3.S.F	Kennedy Krieger Institute
Analysis of the small intestinal microbiome of children with autism	\$0	Q3.S.I	Massachusetts General Hospital
Discordant monozygotic twins as a model for genetic- environmental interaction in autism	\$0	Q3.S.J	Kennedy Krieger Institute
Discordant monozygotic twins as a model for genetic- environmental interaction in autism	\$0	Q3.S.J	Johns Hopkins University
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Developing treatment, treatment validation, and treatment scope in the setting of an autism clinical trial	\$0	Q4.L.A	University of Medicine & Dentistry of New Jersey - Robert Wood Johnson Medical School
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders -2	\$0	Q4.S.B	Burnham Institute
Interaction between MEF2 and MECP2 in the pathogenesis of autism spectrum disorders - 1	\$0	Q4.S.B	Burnham Institute

Project Title	Funding	Strategic Plan Objective	Institution
Development of a high-content neuronal assay to screen therapeutics for the treatment of cognitive dysfunction in autism spectrum disorders	\$0	Q4.S.B	Massachusetts Institute of Technology
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Novel strategies to manipulate Ube3a expression for the treatment of autism and Angelman syndrome	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Novel probiotic therapies for autism	\$0	Q4.S.B	California Institute of Technology
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	Q4.S.B	University of North Carolina at Chapel Hill
Intranasal oxytocin for the treatment of children and adolescents with autism spectrum disorders (ASD)	\$0	Q4.S.C	Holland Bloorview Kids Rehabilitation Hospital
A randomized clinical trial of cognitive enhancement therapy for adults with autism spectrum disorders	\$0	Q4.S.F	University of Pittsburgh
Improving synchronization and functional connectivity in autism spectrum disorders through plasticity-induced rehabilitation training	\$0	Q4.S.F	University of California, San Diego
Development of an internet-based parent training intervention for children with ASD	\$0	Q5.L.A	Michigan State University
Using technology to expand and enhance applied behavioral analysis programs for children with autism in military families	\$0	Q5.L.A	University of Nebraska Medical Center
Evaluating and enhancing driving skills of individuals with Asperger's and high-functioning autism	\$0	Q6.L.A	University of Virginia
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$50,434	Q2.S.E	University of Melbourne
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$69,813	Q2.S.E	University of Melbourne
Identifying neurobiological markers of the broader autism phenotype	\$106,245	Q1.L.B	University of Melbourne
MTHFR functional polymorphism C677T and genomic instability in the etiology of idiopathic autism in simplex families	\$114,984	Q2.Other	Queen's University
Risk factors, comorbid conditions, and epidemiology of autism in children	\$143,162	Q3.S.H	Henry M. Jackson Foundation
How autism affects speech understanding in multitalker environments	\$143,264	Q2.Other	University of Maryland, College Park
White matter glial pathology in autism	\$145,689	Q2.Other	East Tennessee State University
Evaluating and enhancing driving ability among teens with autism spectrum disorder (ASD)	\$214,498	Q6.L.A	University of Iowa

Project Title	Funding	Strategic Plan Objective	Institution
Altered gastrointestinal function in the neuroligin-3 mouse model of autism	\$281,742	Q2.S.E	University of Melbourne
Evaluating and enhancing driving ability among teens with autism spectrum disorder (ASD)	\$331,421	Q6.L.A	University of Virginia
Examination of the mGluR-mTOR pathway for the identification of potential therapeutic targets to treat fragile X	\$542,684	Q4.S.B	University of Pennsylvania
Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$560,625	Q4.S.B	University of Texas Health Science Center at San Antonio
Serum antibody biomarkers for ASD	\$570,780	Q1.L.A	University of Texas Southwestern Medical Center
Epigenetic biomarkers of autism in human placenta	\$576,142	Q1.L.A	University of California, Davis
Metabolic signature of antipsychotics used in the treatment of autism	\$588,750	Q4.L.C	University of Cincinnati
A randomized, controlled trial of intranasal oxytocin as an adjunct to behavioral therapy for autism spectrum disorder	\$1,159,063	Q4.S.C	Massachusetts General Hospital